model.add(Convolution2D(20, kernel_size=5, padding="same", input_shape=input_shape)) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # CONV => RELU => POOL model.add(Conv2D(50, kernel_size=5, border_mode="same")) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # Flatten => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation("relu")) # a softmax classifier model.add(Dense(classes)) model.add(Activation("softmax")) return model